Answer:
Sand (SiO2 silica) In its pure form it exists as a polymer, (SiO2)n.
Soda ash (sodium carbonate Na2CO3) ...
Limestone (calcium carbonate or CaCo3) or dolomite (MgCO3)
Explanation:
I am pretty sure you know what sand is, Soda ash is a fine white colored powder that is extracted from the ashes of plants growing in sodium rich soils. Limestone is is a common type of carbonate sedimentary rock.
Answer:
Fault-block mountain
In geography, fault-block mountains arise when the Earth's crust pulls apart and divides. Some parts of the Earth are pushed upwards whereas the other moves downward forming a divergent boundary. In geological studies, a divergent boundary can be described as a linear feature which arises due to plate tectonics which are being pulled apart from each other. Hence, fault-block mountains are most likely to be seen in a divergent boundary.
Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands, which occur when the plates move apart to produce gaps that molten lava rises to fill.
Answer:
The empirical formula is ZnO2
Explanation:
What is the empirical formula for a compound which contains 67.1% zinc and the rest is oxygen?
Step 1: Data given
Suppose the compound has a mass of 100.0 grams
A compound contains:
67.1 % Zinc = 67.1 grams
100 - 67.1 = 32.9 % oxygen = 32.9 grams
Molar mass of Zinc = 65.38 g/mol
Molar mass of O = 16 g/mol
Step 2: Calculate moles of Zinc
Suppose the compound is 100 grams
Moles Zn = 67. 10 grams / 65.38 g/mol
Moles Zn = 1.026 moles
Step 3: Calculate moles of O
Moles O = 32.90 grams / 16.00 g/mol
Moles O = 2.056 moles
Step 4: Calculate mol ratio
We divide by the smallest amount of moles
Zn: 1.026/1.026 = 1
O: 2.056/1.026 = 2
The empirical formula is ZnO2
To control this we can calculate the % Zinc for 1 mol
65.38 / (65.38+2*16) = 0.67.1 = 67.2 %
Answer:
True.
Hope this helps!
let me know if u get it right
Answer:
0.5077 moles
Explanation:
Data Given:
Moles = n = <u>???</u>
Temperature = T = 300 K
Pressure = P = 380 mmHg = 0.50 atm
Volume = V = 25 L
Formula Used:
Let's assume that the hydrogen gas in balloon is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for n,
n = P V / RT
Putting Values,
n = (0.50 atm × 25 L) / (0.082057 atm.L.mol⁻¹.K⁻¹ × 300 K)
n = 0.5077 moles