Question:
What type of product forms in the intramolecular reaction between the aldehyde portion of the glucose molecule below and its C-5 hydroxyl group?
a. disaccharide
b. carboxylic acid
c. hemiacetal
d. ester
e. stereoisomer
Answer:
hemiacetal forms in the intramolecular reaction between the aldehyde portion of the glucose molecule and its C-5 hydroxyl group
Explanation:
It is an alcohol also an ether that has been attached to the carbon molecule. Here the hydrogen has occupied the fourth bonding position. This hemiacetal has been derived from the aldehyde. Hence, hemiketal being an alcohol as well as ether has been attached to the same carbon and also to the two other carbon.
Answer:
60 grams
Explanation:
We have the balanced equation (without state symbols):
6
H
2
O
+
6
C
O
2
→
C
6
H
12
O
6
+
6
O
2
So, we would need six moles of carbon dioxide to fully produce one mole of glucose.
Here, we got
88
g
of carbon dioxide, and we need to convert it into moles.
Carbon dioxide has a molar mass of
44
g/mol
. So here, there exist
88
g
44
g
/mol
=
2
mol
Since there are two moles of
C
O
2
, we can produce
2
6
⋅
1
=
1
3
moles of glucose
(
C
6
H
12
O
6
)
.
We need to find the mass of the glucose produced, so we multiply the number of moles of glucose by its molar mass.
Glucose has a molar mass of
180.156
g/mol
. So here, the mass of glucose produced is
1
3
mol
⋅
180.156
g
mol
≈
60
g
to the nearest whole number.
So, approximately
60
grams of glucose will be produced.
D. A salt e.g NaCl is held by ionic bond