Answer:
(2) Adding more O2(g) would shift the equilibrium to the right because a higher concentration of oxygen is offered than its initial position, therefore more products have to be yielded to maintain equilibrium.
Explanation:
Answer:
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
Explanation:
Conversion of cyclopropane into propene follows first order kinetics.
The integrated rate of first order kinetic is given by :
![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
= Initial concentration of reactant
= final concentration of reactant after time t
k = rate constant of the reaction
We have :
Rate constant of the reaction = k = 
![[A_o]=0.150 M](https://tex.z-dn.net/?f=%5BA_o%5D%3D0.150%20M)
t = 22.0 hour
[A] =?
![[A]=0.150 M\times e^{-5.4\times 10^{-2} hour^{-1}\times 22.hour}](https://tex.z-dn.net/?f=%5BA%5D%3D0.150%20M%5Ctimes%20e%5E%7B-5.4%5Ctimes%2010%5E%7B-2%7D%20hour%5E%7B-1%7D%5Ctimes%2022.hour%7D)
![[A]=0.0457 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.0457%20M)
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
Answer:
1) Ethanol
Explanation:
If we will have <u>interactions</u> we will need more <u>energy</u> to break them in order to go from liquid to gas. If we need more <u>energy</u>, therefore, the <u>temperature will be higher</u>.
In this case, we can discard the <u>propanone</u> because this molecule don't have the ability to form <u>hydrogen bonds</u>. (Let's remember that to have hydrogen bonds we need to have a hydrogen bond to a <u>heteroatom</u>, O, N, P or S).
Then we have to analyze the hydrogen bonds formed in the other molecules. For ethanol, we will have only <u>1 hydrogen bond</u>. For water and ethanoic acid, we will have <u>2 hydrogen bonds</u>, therefore, we can discard the ethanol.
For ethanoic acid, we have 2 <u>intramolecular hydrogen bonds</u>. For water we have 2 <u>intermolecular hydrogen bonds</u>, therefore, the strongest interaction will be in the <u>ethanoic acid</u>.
The<u> closer boiling point</u> to the 75ºC is the <u>ethanol</u> (boiling point of 78.8 ºC) therefore these molecules would have <u>enough energy</u> to <u>break</u> the hydrogen bonds and to past from<u> liquid to gas</u>.
Answer:
glucose
Explanation:
Chemical energy is stored in the bonds that hold the molecule together. ADP can be recycled into ATP when more energy becomes available. The energy to make ATP comes from glucose. Cells convert glucose to ATP in a process called cellular respiration.