At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
<h3>
What is
Avogadro's law?</h3>
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
It is expressed as;
V₁/n₁ = V₂/n₂
Given the data in the question;
- Initial amount of gas n₁ = 2moles
- Initial volume v₁ = 13.9L
- Final amount of gas n₁ = 3moles
V₁/n₁ = V₂/n₂
V₁n₂ = V₂n₁
V₂ = V₁n₂ / n₁
V₂ = (13.9L × 3moles) / 2moles
V₂ = 41.7molL / 2mol
V₂ = 20.85L
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
Learn more about Avogadro's law here: brainly.com/question/15613065
#SPJ1
Answer: A. The reaction takes place in one step.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction.
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.

k= rate constant
a= order with respect to A
b = order with respect to B
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
Closer=Burn
Farther=Freeze
We are the perfect distance away from the sun for it to sustain life.