1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
6

This is written question

Physics
1 answer:
Vinil7 [7]3 years ago
8 0

Answer:

The hotter the substance, the more its particles move, and the higher its thermal energy. ... Heat. The heat from a heater. *Let's think about that cup of hot chocolate. ... Some matter changes from solid to liquid to gas as its particles heat, vibrate and separate. ... Boiling a kettle is an example of both thermal and kinetic energy.

Explanation:

You might be interested in
A force of 6600 N is exerted on a piston that has an area of 0.010 m2
sveticcg [70]

Answer:

Choice A: approximately 0.015\; \rm m^2, assuming that the two pistons are connected via some confined liquid to form a simple machine.

Explanation:

Assume that the two pistons are connected via some liquid that is confined. Pressure from the first piston:

\displaystyle P_1 = \frac{F_1}{A_1} = \frac{6.600\times 10^3\; \rm N}{1.0\times 10^{-2}\; \rm m^{2}} = 6.6\times 10^{5}\; \rm N \cdot m^{-2}.

By Pascal's Principle, because the first piston exerted a pressure of 6.6\times 10^{5}\; \rm N \cdot m^{-2} on the liquid, the liquid will now exert the same amount of pressure on the walls of the container.

Assume that the second piston is part of that wall. The pressure on the second piston will also be 6.6\times 10^{5}\; \rm N \cdot m^{-2}. In other words:

P_2 = P_1 = 6.6\times 10^{5}\; \rm N \cdot m^{-2}.

To achieve a force of 9.900 \times 10^3\; \rm N, the surface area of the second piston should be:

\displaystyle A_2 = \frac{F_2}{P_2} = \frac{9.900\times 10^{3}\; \rm N}{6.6\times 10^5\; \rm N \cdot m^{-2}} \approx 0.015\; \rm m^{2}.

4 0
3 years ago
An ideal gas, initially at a pressure of 11.2 atm and a temperature of 299 K, is allowed to expand adiabatically until its volum
Tju [1.3M]

Answer:

The pressure is  P_2  =  4.25 \ a.t.m

Explanation:

From the question we are told that

   The initial pressure is P_1  =  11.2\ a.t.m

   The  temperature is  T_1 =   299 \ K

   

Let the first volume be  V_1 Then the final volume will be  2 V_1

 Generally for a diatomic  gas

           P_1 V_1 ^r  =  P_2  V_2  ^r

Here r is the radius of the molecules which is  mathematically represented as

    r =  \frac{C_p}{C_v}

Where C_p \  and\   C_v are the molar specific heat of a gas at constant pressure and  the molar specific heat of a gas at constant volume with values

     C_p=7 \  and\   C_v=5

=>   r =  \frac{7}{5}

=>  11.2*( V_1 ^{\frac{7}{5} } ) =  P_2  *  (2 V_1 ^{\frac{7}{5} } )

=>   P_2  =  [\frac{1}{2} ]^{\frac{7}{5} } * 11.2

=>  P_2  =  4.25 \ a.t.m

8 0
3 years ago
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help"
Digiron [165]

Answer: a) The cliff is 532.05m high

b) Her speed just before hitting the ground is 102.12 m/s

Explanation: To solve This, I'll use a sketch diagram, attached to this solution,

In 3seconds, the teacher heard the echo of her initial scream back. We can obtain the distance the teacher had fallen at the end of 3 seconds using the equations of motion,

Y1 = ut + 0.5g(t^2)

Since she's falling under the influence of gravity, her initial velocity, u = 0m/s, g = 9.8m/s2, t = 3s

Y1, distance she fell through in 3 seconds = 0.5×9.8(3^2) = 44.1m

Let the total height of the cliff be (44.1 + x); where is the remaining height of cliff that the teacher will fall through.

Using the equations of motion again, we can obtain distance travelled by the sound waves in 3s. sound waves travel with a constant speed of 340m/s, no acceleration,

Y2 = ut + 0.5g(t^2) where g = 0, u = 340m/s, t = 3seconds

Y2 = 340 × 3 = 1020m

But in 3 secs, the sound waves would have travelled through the total height of the cliff (44.1 + x) and back to the teacher's current height, x. That is, 1020 = 44.1 + x + x

x = 487.95m

So, total height of cliff = 44.1 + 487.95 = 532.05m

b) the speed of the teacher just before she hits the ground.

Using the equations of motion again,

(V^2) = (U^2) + 2gs

Where v is the final velocity to be calculated

U is the initial velocity = 0m/s

g is acceleration due to gravity = 9.8m/s2

S is the total height she fell through, that is, the height of the cliff = 532.05m

(V^2) = 0 + 2×9.8×532.05 = 10428.18

V = √(10428.18) = 102.12m/s

QED!

4 0
3 years ago
Humorous name for a model T Ford
AfilCa [17]

Old Grandpy!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


6 0
3 years ago
Read 2 more answers
Three identical charges q form an equilateral triangle of side a with two charges on the x-axis and one on the positive y-axis.
shusha [124]

Answer:

F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

Explanation:

Given:

- Three identical charges q.

- Two charges on x - axis separated by distance a about origin

- One on y-axis

- All three charges are vertices

Find:

- Find an expression for the electric field at points on the y-axis above the uppermost charge.

- Show that the working reduces to point charge when y >> a.

Solution

- Take a variable distance y above the top most charge.

- Then compute the distance from charges on the axis to the variable distance y:

                                  r = \sqrt{(\frac{\sqrt{3}*a }{2} + y)^2 + (a/2)^2  }

- Then compute the angle that Force makes with the y axis:

                                 cos(Q) = sqrt(3)*a / 2*r

- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:

                                 F_1,2 = 2*F_x*cos(Q)

- The total net force would be:

                                F_net = F_1,2 + kq / y^2

- Hence,

                                F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

- Now for the limit y >>a:

                              F_n = k*q*(\frac{2*y(1 + \frac{\sqrt{3}*a }{2*y}) }{y^3((1+ \frac{\sqrt{3}*a }{2*y})^2 + (a/y*2)^2)^1.5 }) +\frac{1}{y^2}  )

- Insert limit i.e a/y = 0

                              F_n = k*q*(\frac{2}{y^2} +\frac{1}{y^2})  \\\\F_n = 3*k*q/y^2

Hence the Electric Field is off a point charge of magnitude 3q.

8 0
4 years ago
Other questions:
  • Water on the kitchen floor at home is considered a safety hazard.
    7·2 answers
  • ) What is the regression equation? Remember, use 3 decimal places for ALL answers. mu^^\^y|x = + x (b) What is the estimated mea
    14·1 answer
  • Apply the kinetic theory to describe the motion of particles in a homogenous mixture of sugar and water as it is boiled.
    12·2 answers
  • Dibujar un triángulo,dividelo en tres partes,en la parte de arriba ponga la D = a la distancia,en la parte de abajo a la izquier
    5·1 answer
  • A scientist directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 580 nm and the
    6·1 answer
  • The circuit you should use to find the open-circuit voltage is
    6·1 answer
  • A rock falls from a tower that is 320 feet high. As it is​ falling, its height is given by the formula h equals 320 minus 16 t s
    15·1 answer
  • You observe a car traveling 40 km/s southeast. you observed the cars what?
    5·1 answer
  • Where do you weight more on top of Mt. Everest (Highest Mt. in the world) or at the beach
    12·1 answer
  • Rooms are fitted with ventilators to let the air move around. The phenomenon involved is:
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!