1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
12

Dimension ofUpthrust​

Physics
1 answer:
alina1380 [7]3 years ago
8 0

Explanation:

upthrust is the same as Force

And the dimension of Force is MLT-2

The -2 is going to be in raise to power form....

Hope it helps....

You might be interested in
Identical twins, each with mass 61.0 kg, are on ice skates and at rest on a frozen lake, which may be taken as frictionless. Twi
Anna007 [38]

Answer:

Immediately after throwing the backpack away, twin A would be moving away from twin B at approximately 0.630\; \rm m \cdot s^{-1}.  

Initially, twin B would not immediately be moving. However, after the backpack hits her, she would move away from twin A at approximately 0.526\; \rm m \cdot s^{-1} if she held onto the backpack.

Explanation:

Consider this scenario in three steps:

  • Step one: twin A is carrying the backpack.
  • Step two: twin A throws the backpack away; the backpack is en route to twin B;
  • Step three: twin B starts to move after the backpack hits her.

Since all external forces are ignored, momentum should be conserved when changing from step one to step two, and from step two to step three.

<h3>From step one to step two</h3>

In step one, neither twin A nor the backpack is moving. Their initial momentum would be zero. That is:

  • p(\text{twin A, step one}) = 0.
  • p(\text{backpack, step one}) = 0.

Therefore:

p(\text{backpack, step one}) +p(\text{twin A, step one}) = 0.

In step two, the backpack is moving towards twin B at 3.20\; \rm m \cdot s^{-1}. Since the mass of the backpack is 12.0\; \rm kg, its momentum at that point would be:

\begin{aligned}p(\text{backpack, step two}) &= m \cdot v \\ &= 12.0\;\rm kg \times 3.20\; \rm m \cdot s^{-1} = 38.4\; \rm kg\cdot m \cdot s^{-1}  \end{aligned}.

Momentum is conserved when twin A throws the backpack away. Hence:

\begin{aligned}&p(\text{backpack, step two}) +p(\text{twin A, step two}) \\ &= p(\text{backpack, step one}) +p(\text{twin A, step one})\end{aligned}.

Therefore:

p(\text{twin A, step two}) \\ &= p(\text{backpack, step one}) +p(\text{twin A, step one}) - p(\text{backpack, step two}) \\ &= -38.4\; \rm kg \cdot m \cdot s^{-1}\end{aligned}.

The mass of twin A (without the backpack) is 61.0\; \rm kg. Therefore, her velocity in step two would be:

\begin{aligned} v(\text{twin A, step two}) &= \frac{p}{m} \\ &= \frac{-38.4\; \rm kg \cdot m \cdot s^{-1}}{61.0\; \rm kg} \approx -0.630\; \rm m \cdot s^{-1}\end{aligned}.

Note that while the velocity of the backpack is assumed to be greater than zero, the velocity of twin A here is less than zero. Since the backpack is moving towards twin B, it can be concluded that twin A is moving in the opposite direction away from twin B.

<h3>From step two to step three</h3>

In step two:

  • p(\text{twin B, step two}) = 0 since twin B is not yet moving.
  • p(\text{backpack, step two}) = 38.4\; \rm kg \cdot m\cdot s^{-1} from previous calculations.

Assume that twin B holds onto the incoming backpack. Thus, the velocity of the backpack and twin B in step three will be the same. Let v(\text{twin B and backpack, step three}) denote that velocity.

In step three, the sum of the momentum of twin B and the backpack would thus be:

\begin{aligned}& m(\text{twin B}) \cdot v(\text{twin B and backpack, step three}) \\ &+ m(\text{backpack}) \cdot v(\text{twin B and backpack, step three})\end{aligned}.

Simplify to obtain:

(m(\text{twin B}) + m(\text{backpack})) \cdot v(\text{twin B and backpack, step three}).

Momentum is conserved when twin B receives the backpack. Therefore:

\begin{aligned}& (m(\text{twin B}) + m(\text{backpack})) \cdot v(\text{twin B and backpack, step three})\\ =&p(\text{twin B, step two}) +p(\text{backpack, step two})\\ =& 38.4\; \rm kg \cdot m\cdot s^{-1}   \end{aligned}.

Therefore:

\begin{aligned}& v(\text{twin B and backpack, step three})\\ =&\frac{p(\text{twin B, step two}) +p(\text{backpack, step two})}{m(\text{twin B}) + m(\text{backpack})}\\ =& \frac{38.4\; \rm kg \cdot m\cdot s^{-1}}{61.0\; \rm kg + 12.0\; \rm kg} \approx 0.526\;\rm m\cdot s^{-1} \rm \end{aligned}.

In other words, if twin B holds onto the backpack, then (after doing so) she would be moving away from twin A at approximately 0.526\; \rm m \cdot s^{-1}.

6 0
3 years ago
which statement best describes what would happen if the number of wore coils in a electromagnavneg were increased
jekas [21]
Where are the following choices
4 0
3 years ago
How does refraction allow thin convex lenses to work?
melomori [17]

Answer:

https://www.khanacademy.org/science/physics/geometric-optics/lenses/v/convex-lenses

Explanation:

Here is a link to a video to tell you about this.

7 0
3 years ago
Read 2 more answers
A charged particle is placed in an external magnetic field and it is moving in a circular path of radius 26m.The magnetic force
ElenaW [278]

Answer:

208 Joules

Explanation:

The radius of the circular path the charge moves, r = 26 m

The magnetic force acting on the charge particle, F = 16 N

Centripetal force, F_c = m·v²/r

Kinetic energy, K.E. = (1/2)·m·v²

Where;

m = The mass of the charged particle

v = The velocity of the charged particle

r = The radius of the path of the charged particle

Whereby the magnetic force acting on the charge particle = The centripetal force, we have;

F = F_c = m·v²/r = 16 N

(1/2) × r × F_c = (1/2) × r × m·v²/r = (1/2)·m·v² = K.E.

∴ (1/2) × r × F_c = (1/2) × 26 m × 16 N =  = (1/2)·m·v² = K.E.

∴ 208 Joules = K.E.

The kinetic energy of an particle moving in the circular path, K.E. = 208 Joules.

4 0
3 years ago
Calculate the power of a car that uses 12KJ of chemical energy in 6 seconds
PolarNik [594]

Explanation:

Power=work done/time

=> 12kJ/6s = 12000J/6s = 2000W = 2kW.

hope this helps you

8 0
3 years ago
Other questions:
  • A highway curve of radius 833 m is designed for traffic moving at a speed of 82 km/h to be able to traverse the curve without th
    11·2 answers
  • A red tail flew 200 meters in 25 seconds. What was the speed?
    14·1 answer
  • What is the answer to this question?
    6·1 answer
  • Which of the following statements are true? Check all that apply.
    6·1 answer
  • If the work function of a material is such that red light of wavelength 700 nm just barely initiates the photoelectric effect, w
    5·1 answer
  • 8. When a plate cracks, the crack is called a
    11·1 answer
  • In ptolemy’s earth-centered model for the solar system, venus always stays close to the sun in the sky and, because it always st
    14·1 answer
  • Their original size.
    7·1 answer
  • A book weighing 1.2 kg stands on the table. We place our hand on the book with a force of 15.3 N. The reaction force of the tabl
    14·1 answer
  • The car travels 28m in 7s. What is the speed of the car?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!