Answer:
V = 3.54 m/s
Explanation:
Using the conservation of energy:

so:

where w is te weigh of kelly, h the distance that kelly decends, m is the mass of kelly and V the velocity in the lowest position.
So, the mass of kelly is:
m = 425N/9.8 = 43.36 Kg
and h is:
h = 1m-0.36m =0.64m
then, replacing values, we get:

Solving for v:
V = 3.54 m/s
Answer: An object undergoing uniform circular motion is moving
Explanation:
A scalar is a quantity that is fully described by a magnitude only. It is described by just a single number. Some examples of scalar quantities include speed, volume, mass, temperature, power, energy, and time. A vector is a quantity that has both a magnitude and a direction.
I hope this helps you.
Answer:
In biological taxonomy, a domain (also superregnum, superkingdom, or empire) is a taxon in the highest rank of organisms, higher than a kingdom. ... The three-domain system of Carl Woese, introduced in 1990, with top-level groupings of Archaea, Bacteria, and Eukaryota domains.
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons