Answer:
<h2>39.2 m</h2>
Explanation:
The height of the hill side can be found by using the formula

p is the potential energy
m is the mass
From the question we have

We have the final answer as
<h3>39.2 m</h3>
Hope this helps you
Important thing when making a lava lamp are the two liquids with different density so that it would not mix and that it would expand when heated. The movement of the orange liquid is called convection. if you will not heat the orange one, it till just stay on the stop and not go under tha water.
Answer:The distance o the ramp that the car traveled is given by d=(1/2)at^2=(0.5)(3.96)(5.76)^2=65.69 meters. The horizontal component of this travel is 65.69*
Explanation:
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1