There are problems with the first sentence, and it's not really needed when
working with this question. So let's just take the 20 (Hz ?) frequency from
the first sentence, and ignore the rest of it for right now.
Wavelength = (speed) / (frequency) =
(331 m/s) / (20 Hz) = <em>16.55 meters</em>.
Answer:
Wg is positive and WT negative.
(Letters in options are all wrongly written).
Explanation:
Remember that the work of a force is the internal product between the force and the displacement
.
Since the displacement is downwards like the weight, the work done by gravity is positive, while the work done by the tension is negative since it points upwards.
Answer:
Fa=774 N
Fb=346 N
Explanation:
We will solve this problem by equating forces on each axis.
- On x-axis let forces in positive x-direction be positive and forces in negative x-direction be negative
- On y-axis let forces in positive y-direction be positive and forces in negative y-direction be negative
While towing we know that car is mot moving in y-direction so net force in y-axis must be zero
⇒∑Fy=0
⇒
⇒
⇒
Given that resultant force on car is 950N in positive x-direction
⇒∑Fx=950
⇒
⇒
⇒
⇒
⇒
⇒ 
⇒


Therefore approximately, Fa=774 N and Fb=346 N
Answer: Some challenges that I could see would be the walls, possibly a moat, tar, and the towers.
Explanation: The wall is obliviously a main problem, trying to get over it or through it is a difficult challenge. The moat (if it has one) means that there is more than likely only one way to get in or out. If it does have tar it means that the attackers are going to be put in a "sticky situation" And finally the towers, they have people at the top shooting arrows down at you, or throwing things at you.
Answer:
2.7 J
Explanation:
The energy of one photon is given by

where
h is the Planck constant
f is the frequency
For the photons in this problem,

So the energy of one photon is

The number of photons contained in 1.0 mol is
(Avogadro number)
So the total energy of
photons contained in 1.0 mol is
