Answer: Force and Movement
Explanation:
The first is that the object moves. The second is that a force must act on the object in the direction the object moves.
Answer:
Explanation:
Applied force, F = 18 N
Coefficient of static friction, μs = 0.4
Coefficient of kinetic friction, μs = 0.3
θ = 27°
Let N be the normal reaction of the wall acting on the block and m be the mass of block.
Resolve the components of force F.
As the block is in the horizontal equilibrium, so
F Cos 27° = N
N = 18 Cos 27° = 16.04 N
As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .
The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N .... (1)
The vertically downward force acting on the block is mg - F Sin 27°
= mg - 18 Sin 27° = mg - 8.172 ... (2)
Now by equating the forces from equation (1) and (2), we get
mg - 8.172 = 6.42
mg = 14.592
m x 9.8 = 14.592
m = 1.49 kg
Thus, the mass of block is 1.5 kg.
Answer:
They can use it for when they are dormant in the winter or to grow more sources for storing and creating energy, or they store the energy (this energy would be considered stored energy).
The momentum increases by a factor of 2
Explanation:
We can solve this problem by rewriting the momentum of the rocket in terms of the kinetic energy and the mass.
The kinetic energy of the rocket is:
(1)
where
m is the mass
v is the velocity
The momentum of the rocket is
(2)
From eq.(1) we get

and substituting into (2),

Now in this problem we have:
- The kinetic energy of the rocket is increased by a factor 8:

- The mass is reduced by half:

Substituting, we find the new momentum:

So, the momentum increases by a factor of 2.
Learn more about momentum and kinetic energy:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
brainly.com/question/6536722
#LearnwithBrainly