Answer:
[C₆H₅COO⁻][H₃O⁺]/[C₆H₅COOH] = Ka
Explanation:
The reaction of dissociation of the benzoic acid in water is given by the following equation:
C₆H₅-COOH + H₂O ⇄ C₆H₅-COO⁻ + H₃O⁺ (1)
The dissociation constant of an acid is the measure of the strength of an acid:
HA ⇄ A⁻ + H⁺ (2)
(3)
<em>Where the dissociation constant of the acid (Ka) is equal to the ratio of the concentration of the dissociated forms of the acid, [A⁻][H⁺], and the concentration of the acid, [HA]. </em>
So, starting from the equations (2) and (3), the constant equation for the dissociation reaction of benzoic acid in water, of the equation (1), is:
![K_{a} = \frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DCOO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DCOOH%5D%7D%20)
I hope it helps you!
Which property of gas affects the gas by change in that property ?
<u>8:4 and 4:8</u> both have CCP structure............................... ᐛ
Sodium reacts to chlorine and gives NaCl. The balanced reaction is given below:
2Na + Cl₂→ 2NaCl. Two moles Na reacts with one mole Cl₂ and produces two moles of NaCl. Atomic mass of Na= 23, Molar mass of Cl₂= 71, molar mass of NaCl=58.5.
So, 46 g Na reacts with 71 g of Cl₂ and produces (2 X 58.5)g = 117 g of NaCl. As per question Na reacts completely which means Na is the limiting reagent. So, number of moles of Na reacts = number moles of NaCl produced.
NaCl produced= 819 g= (819/58.5) moles= 15.69 moles. Therefore, 15.69 moles = 15.69 X 23 g=360.87 g of Na reacted.