Answer : The original concentration of copper (II) sulfate in the sample is, 
Explanation :
Molar mass of Cu = 63.5 g/mol
First we have to calculate the number of moles of Cu.
Number of moles of Cu = 
Now we have to calculate the number of moles of 
Number of moles of Cu = Number of moles of 
Number of moles of
= 
Now we have to calculate the molarity of 

Now put all the given values in this formula, we get:

To change mol/L into g/L, we need to multiply it with molar mass of 
Molar mass of
= 159.609 g/mL
Concentration in g/L = 
Thus, the original concentration of copper (II) sulfate in the sample is, 
To prepare 350 mL of 0.100 M solution from a 1.50 M
solution, we simply have to use the formula:
M1 V1 = M2 V2
So from the formula, we will know how much volume of the
1.50 M we actually need.
1.50 M * V1 = 0.100 M * 350 mL
V1 = 23.33 mL
So we need 23.33 mL of the 1.50 M solution. We dilute it
with water to a volume of 350 mL. So water needed is:
350 mL – 23.33 mL = 326.67 mL water
Steps:
1. Take 23.33 mL of 1.50 M solution
<span>2. Add 326.67 mL of water to make 350 mL of 0.100 M
solution</span>
Answer:
1/3
Explanation:
Pyruvate is produced by the glycolysis in cytoplasm. The oxidation of pyruvate takes place in mitochondrial matrix.
Pyruvate is converted to acetyl-CoA in the reaction given below:
Pyruvate + NAD⁺ + CoA-SH ⇒ acetyl-CoA + NADH + CO₂
1 molecule of carbon dioxide is eliminated from 1 molecule of pyruvate.
Also,
2 molecules of carbon dioxide is eliminated from 2 molecules of pyruvate (as glucose on glycolysis yields 2 molecules of pyruvate).
Also, acetyl-CoA further goes into the citric acid cycle and produces 2 molecules of carbon dioxide.
Thus pyruvate produces total 3 molecules of CO₂ and hence glucose produces 6 molecules of CO₂ (as glucose on glycolysis yields 2 molecules of pyruvate)
Thus,
<u>Fraction = 2/6 = 1/3</u>
A thermocouple is a sensor used to measure temperature. Thermocouples are made with two wires of different metals, joined together at one end to form a junction. ... Naturally, a thermocouple outputs a millivolt signal, therefore, as the resistance changes, the change in voltage can be measured.
-nat geo