1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
2 years ago
10

Using standard heats of formation, calculate the standard enthalpy change for the following reaction.

Chemistry
1 answer:
UNO [17]2 years ago
3 0
George washing ton hiyayay

You might be interested in
137g of Ba + ______ g oh I --> 391g of BaI2
sertanlavr [38]

Answer:

Explanation:

Is it worth it? Joy

7 0
2 years ago
You know that energy cannot be created or destroyed, so what happens to it?
riadik2000 [5.3K]
Mass cannot be created nor destroyed as well.

So, energy just goes into other things. 

Example: you are born. You have carbon dioxide in your body, (or star dust). When you die, your body releases that gas.

Make sense?

I hope this helps! (:
6 0
2 years ago
Read 2 more answers
Pls help with science
MissTica
The answer is C because it is believed that those two were once connected
6 0
2 years ago
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
2 years ago
Read 2 more answers
The molar heat of vaporization of water is 40.7kJ/mol. How much heat must be absorbed to convert 50.0 grams of liquid water at 1
EleoNora [17]
During a phase change the temperature does not change since all of the heat is being absorbed in order to break the intermolecular forces.  Due to that, the formula will not need to have T in it and is actually q=nΔH(v).
n=the number of moles (in this case 2.778mol of water since you divide 50g by 18g/mol).
ΔH(v)=the molar heat of vaporization (in this case 40.7kJ/mol).
q=the heat that must be absorbed
q=2.778mol×40.7kJ/mol
q=113.1kJ
Therefore the water needs to absorb 1.13×10²kJ.

I hope this helps.  Let me know if anything is unclear.

4 0
3 years ago
Other questions:
  • Using Gibbs Equation, dU=TdS-pdV show that (dS/dV) at a constant U =P/T. The reciprocal of (dS/dU)v = 1/T.
    15·1 answer
  • How many moles of O2 are in 53 L of O2 at STP?<br> A) 2.4<br> B) 0.45<br> C) 1.65<br> D) 1187
    5·1 answer
  • Why can color alone be used to identify most minerals?
    6·1 answer
  • A gaseous hydrocarbon contains 80% carbon and 20% hydrogen, 1dm3 of the compound at s.t.p weighs 1.35g find the molecular formul
    10·1 answer
  • At low temperatures and pressure, how does the volume of a real gas compare with the volume of an ideal gas under the same condi
    14·1 answer
  • When the following equation is balanced, the coefficient of H2O is Ca(s) + H2O + Ca(OH)2 + H2 a) 2
    15·1 answer
  • “Na2SO3” represents sodium sulfite.What does the 4 mean in the formula 4Na2SO3?
    8·2 answers
  • The solubility of sugar is 250 at 60° what does it mean​.<br>please helpp anyone please help...
    15·1 answer
  • Can someone help me?
    15·1 answer
  • La masa molecular de la cafeina es de 194,19g ¿cual es la formula molecular de la cafeina ?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!