1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
6

1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?

Chemistry
2 answers:
Sedbober [7]2 years ago
5 0
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
Tanzania [10]2 years ago
4 0

Answer:

0 unpaired

Explanation:

the electron configuration of 1s^2 2s^2 2p^6 3s^2 3p^6, can also be written in noble gas configuration as [Ne] 3s^2 3p^6 which translates to the element Argon ( Ar ). Since the outer shell is full with 8 valence electrons, there is no lone electron so all elections are paired.

You might be interested in
Which statements are true about Figure I and Figure II below? (Check all that apply)
Scilla [17]

Both figures are mixtures,

Figure II is a heterogenous mixture

Figure I is a homogenous mixture

5 0
3 years ago
Explain, in terms of electron configuration why atoms of the radioisotope produced by the sixth decay in the U-238 disintegratio
Troyanec [42]

Answer:

The reason they don't react is because Elements with full octets are stable, the Elements with no unpaired electrons do not react at all in the decay.

4 0
2 years ago
Acids will corrode most _____.<br> bases<br> liquids<br> metals<br> gases
aliya0001 [1]
Acids corrode most metals
3 0
3 years ago
Read 2 more answers
Acids react with
Verdich [7]
Water is produce bases and says
6 0
2 years ago
Why do your ears “pop” in an airplane?
tino4ka555 [31]
Pressure buildup in ur ear
8 0
2 years ago
Other questions:
  • Explain why 2-bromopropane reacts with sodium iodide in acetone over 104 times faster than bromocyclopropane. hint: examine the
    8·1 answer
  • Choose the selection which correctly characterizes all three of the following substances in terms of whether they are polar or n
    14·1 answer
  • If it takes 54ml of 0.1 m naoh to neutralize 125 ml of a hcl solution with unknown concentration, what is the concentration of t
    13·1 answer
  • Why hydrogen fluoride is a gas at room temperature?
    14·1 answer
  • Is it possible for a child to have a dna band that is not found in the mother's dna? Explain
    15·2 answers
  • When methyloxirane is treated with HBr, the bromide ion attacks the less substituted position. However, when phenyloxirane is tr
    7·1 answer
  • URGENT! PLEASE HELP ASAP
    14·1 answer
  • Can someone help me pls will mark Brainly and 10+ points
    5·1 answer
  • Please help asap loll
    11·1 answer
  • Electrical Safety Test Take Exam
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!