1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
6

1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?

Chemistry
2 answers:
Sedbober [7]2 years ago
5 0
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
Tanzania [10]2 years ago
4 0

Answer:

0 unpaired

Explanation:

the electron configuration of 1s^2 2s^2 2p^6 3s^2 3p^6, can also be written in noble gas configuration as [Ne] 3s^2 3p^6 which translates to the element Argon ( Ar ). Since the outer shell is full with 8 valence electrons, there is no lone electron so all elections are paired.

You might be interested in
Plssssssssssss help me
Kryger [21]
I can’t see the picture its too small
6 0
2 years ago
What s thisssss oneeeeeee
ZanzabumX [31]
C
Explanation- equals 459
3 0
2 years ago
1. The forks shown are made of silver (Ag). Some of the silver forks
Anon25 [30]

Answer:

Corrosion

Explanation:

Silver, although known as a nobble metal, is also subject to corrosion process such as having silver tarnish when exposed to sulfur and air.

Tarnishing occurs on the surfaces of some metals such as brass, copper, and silver, which results in a corroded layer. Silver tarnish occurs from the chemical reaction that takes place when silver is exposed to sulfur which results in the formation of black Ag₂S

In order to restore the original silver surface, the silver tarnish (silver sulfide) layer is removed.

We have the statement presented here as follows;

The forks shown are made of silver (Ag). Some of the silver forks shown have lost their luster - they have become tarnished. This is an example of <u>Corrosion.</u>

4 0
2 years ago
If 500ml of H₂ gas at 600mmHg and 400ml of CO₂ gas at 700mmHg are mixed in a 1 lit vessel, find the total pressure of mixture of
seraphim [82]

Answer:

Total pressure increased

Explanation:

When gas C is added in the vessel then number of mole increases and number of collision depends on the number of molecules present in the vessel and on adding gas C ,mole also increases hence  number of collision increases therefore pressure also increases because number of collision increases.

Total pressure increases.

6 0
2 years ago
What does the term "basic unit of matter" refer to?
MArishka [77]
Vas happenin
Hope your day is going well
Atoms are referred to basic unit of matter
Hope this helps *smiles*
4 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose you were titrating approximately 0.1 m hcl solution with standardized naoh solution (0.0989m). in your lab manual, you w
    7·2 answers
  • Calculate the percent ionization of nitrous acid in a solution that is 0.222 M in nitrous acid (HNO3) and 0.278 M in potassium n
    8·1 answer
  • Some molecules that are covalently bonded do not have a difference in charge across the molecule. These molecules are referred t
    15·1 answer
  • Experiments<br> 11. What 2 factors increase the validity of a scientific experiment?
    13·1 answer
  • Copper metal (Cu) reacts with silver nitrate (AgNO3) in aqueous solution to form Ag and Cu(NO3)2. An excess of AgNO3 is present.
    13·2 answers
  • Unknown # 41
    15·1 answer
  • Ano ang scientific method​
    6·1 answer
  • How much heat is needed to raise a 0.30 g piece of aluminum from 30.C to 150C? The specific heat of aluminum 0.900j/gC
    14·1 answer
  • NaCl has a Delta. Hfus = 30. 2 kJ/mol. What is the mass of a sample of NaCl that needs 732. 6 kJ of heat to melt completely? Use
    8·1 answer
  • What is waves is energy passing through the medium of water? true or false​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!