1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
6

1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?

Chemistry
2 answers:
Sedbober [7]2 years ago
5 0
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
Tanzania [10]2 years ago
4 0

Answer:

0 unpaired

Explanation:

the electron configuration of 1s^2 2s^2 2p^6 3s^2 3p^6, can also be written in noble gas configuration as [Ne] 3s^2 3p^6 which translates to the element Argon ( Ar ). Since the outer shell is full with 8 valence electrons, there is no lone electron so all elections are paired.

You might be interested in
I have 2 Valence electrons and 1 energy levels
natima [27]

Answer:

Hydrogen(H) and Heluim(He)

Explanation:

These are the only two valennce electrons and 1 energy levels.

3 0
3 years ago
Read 2 more answers
And non-flammable gases<br> Noble gases are<br> that have low chemical
gtnhenbr [62]

Answer:

  • Noble gases are <u>odorless, colorless,</u> and nonflammable gases that have low chemical <u>reactivity</u><u>.</u>
  • The full <u>valence electron shells</u><u> </u>of these atoms make noble gases extremely <u>stable</u><u>.</u>
  • & they are <u>unlikely to form chemical bonds</u><u> </u>because they have little tendency to gain or lose

<u>electrons.</u>

5 0
2 years ago
When electrons are added to the outer most shell of a carbon atom what does it form
bagirrra123 [75]
When electrons are added to the outermost shell of a carbon atom, it forms an anion.
3 0
2 years ago
jane starts to blink her eyes when her brother shines a flashlight at her. why does jane start blinking her eyes
Ivanshal [37]
There is too much light entering her eyes. 
3 0
2 years ago
The gas usually filled in the electric bulb is
Mariulka [41]

Answer:

1st answer:  A. nitrogen

2nd answer:  A. Sodium carbonate

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Jacques Charles used this reaction to prepare hydrogen gas for his historic balloon flights: Fe(s) + H2SO4(aq) = FeSO4(aq) + H2(
    8·1 answer
  • What volume would be occupied by 8.1 g of a substance with a density of 1.65041 g/cm3 ? answer in units of cm3 ?
    7·1 answer
  • Provide an appropriate alkyne starting material A and intermediate product B. Omit byproducts. The number of carbon atoms in the
    14·1 answer
  • 6. How is the law of conservation of mass shown by a balanced chemical equation?
    15·1 answer
  • A possible mechanism for the overall reaction br2 (g) + 2no (g) → 2nobr (g) is no (g) + br2 (g) nobr2 (g) (fast) nobr2 (g) + no
    13·1 answer
  • Write and Balance:<br> Exothermic reaction between aqueous sodium hydroxide and sulphuric acid.
    12·1 answer
  • Which equation demonstrates that nuclear fusion forms elements that are heavier than helium?
    12·2 answers
  • What makes inertia important in that activity?
    15·1 answer
  • A student wants to prove the concept of limiting reactants to his lab group during class. If the student adds 56 g or Fe to 71 g
    7·1 answer
  • I REALLY NEED THE HELP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!