Answer:
9.1
Explanation:
Step 1: Calculate the basic dissociation constant of propionate ion (Kb)
Sodium propionate is a strong electrolyte that dissociates according to the following equation.
NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻
Propionate is the conjugate base of propionic acid according to the following equation.
C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻
We can calculate Kb for propionate using the following expression.
Ka × Kb = Kw
Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰
Step 2: Calculate the concentration of OH⁻
The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.
[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M
Step 3: Calculate the concentration of H⁺
We will use the following expression.
Kw = [H⁺] × [OH⁻]
[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M
Step 4: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1
Answer: The frequency of the wave is 0.5 hertz.
Explanation:

= Frequency of the wave
= speed of the light in m/s
= Wavelength of the wave.
Here in question we are given with speed of the infrared light. So, we will replace the value of speed of light(c) from the given value of the speed of the infrared light.
Speed of infrared light = 6 m/s

The frequency of the wave is 0.5 hertz.
Answer:
572 g
Explanation:
Molar mass is the mass of 1 mol of an element or compound
molar mass of Li₂SO₄ is the sum of the products of the molar masses of the elements by the number of atoms in the compound
molar masses of each element making up lithium sulphate
Li - 7 g/mol
S - 32 g/mol
O - 16 g/mol
molar mass of Li₂SO₄ - (7 g/mol x 2) + ( 32 g/mol x 1) + ( 16 g/mol x 4 )
molar mass = 110 g/mol
mass of 1 mol of Li₂SO₄ is 110 g
therefore mass of 5.2 mol of Li₂SO₄ is - 110 g/mol x 5.2 mol = 572 g
mass is 572 g
High energy hope this helps
Because the rate at which water vapour condenses gets increase slowly to get equal to the rate of evaporation of the water.
Explanation:
When a bottle is partly filled with liquid water is leaves space for vapours to escape and get condensed equally.
When sealed and kept below the lamp the rate of condensation increases due to the empty space in the bottle for getting vapours cool down.
A point arrives when evaporation equates the condensation of the liquid in bottle becomes stable because vapours cannot pass the bottle eventually condense and become liquid.