Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
Answer: both the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Explanation:
Glycogen is a polysaccharide of glucose which is a form of energy storage in fungi, bacteria and animals. Glycogen is primarily stored in the liver cells and skeletal muscle.
The difference in interchain stability between the polysaccharides glycogen and cellulose is due to the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Answer:
The Ideal gas law
Explanation:
From the given question, we have:
V

where each variable has its usual meaning.
Thus,
V = 
where R is the ideal gas constant
cross multiply to have;
PV = nRT
This implies that the volume of the gas is directly proportional to the number of moles of the gas.
Therefore, the law can be used to determine the relationship between the volume and number of moles is the ideal gas law.
Answer:
The correct answer is pOH= 11
Explanation:
From the aqueous acid-base equilibrium we know that
pH + pOH = 14
If we know pH, we can calculate pOH as follows:
pOH = 14 - pH
In this problem, the solution has a pH of 3, so:
pOH = 14 - 3 = 11