Answer:
Both gives hydroxides, but
Calcium reacts with water to give calcium hydroxide Ca(OH)2. this product is slightly soluble in water.
Aluminium is less reactive than Ca, so it reacts with only steam, to give aluminium hydroxide Al(OH)3. This product is insoluble in water.
Answer:
According to Bronsted-lowry concept an acid is a hydrogen donnor and a base is a hydrogen acceptor.
Explanation:
Answer:
[COF₂] = 0.346M
Explanation:
For the reaction:
2COF₂(g) ⇌ CO₂(g) + CF₄(g)
Kc = 5.70 is defined as:
Kc = [CO₂] [CF₄] / [COF₂]² = 5.70 <em>(1)</em>
Equilibrium concentrations of each compound after addition of 2.00M COF₂ will be:
[COF₂] : 2.00M - 2x
[CO₂] : x
[CF₄] : x
Replacing in (1):
5.70 = [X] [X] / [2-2x]²
22.8 - 45.6x + 22.8x² = x²
0 = -21.8x² + 45.6x - 22.8
Solving for x:
X = 1.265 <em>-False answer, will produce negative concentrations-</em>
<em>X = 0.827.</em>
Replaing, molar concentration of COF₂ is:
[COF₂] : 2.00M - 2×0.827 = <em>0.346M</em>
I hope it helps!
Answer:
HCl(aq) + KOH(aq --> KCl(aq) + H₂O(l)
Explanation:
Answer:
CH₃CH₂CH₂COOH.
Explanation:
To know which option is correct, let us hydrolysed the given ester. This is illustrated in the attached photo.
Hydrolysis of ester involves breaking the ester bond by a water molecule to produce the corresponding alcohol and carboxylic acid.
From the reaction given in the attached photo, we can see that the carboxylic acid needed to produce the desired ester is butanoic acid, CH₃CH₂CH₂COOH.