Answer:
d) 1000 times
Explanation:
As we know that difference of sound level is given as

so here we need to find the ratio of two intensity
it is given as



now we have

so it is
d) 1000 times
Answer:
3.7 A
Explanation:
Parameters given:
Magnetic field strength, B = 5 * 10^(-5) T
Distance of magnetic field from wire, r = 1.5 cm = 0.015 m
The magnetic field, B, due to a current, I, flowing a wire is given as:
B = (μ₀*I) / 2πr
Where μ₀ = permeability of free space
To get the current, I, we make I the subject of the formula:
I = (2πr * B) / μ₀
I = (2 * 3.142 * 5 * 10^(-5)) / (1.25663706 × 10^(-6))
I = 3.7 A
The least number of component of a vector quantity is two. These are the x-component and the y-component.
The resultant vector, or vector as we refer to it in this item, can be calculated through the equation,
RV = sqrt ((Vx)² + (Vy)²)
From the equation, it can be noted that if we let Vx equal to zero,
RV = Vy
Similarly, if we let Vy be equal to zero then,
RV = Vx
Thus, it is still possible for the vector to become nonzero even if one of its components is zero.
B. transition metals for sure
Answer:
a . 0.35cm
b. 11.33cm
Explanation:
a. Given both currents are in the same direction, the null point lies in between them. Let x be distance of N from first wire, then distance from 2nd wire is 4-x
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in between the wires:

Hence, for currents in same direction, the point is 0.35cm
b. Given both currents flow in opposite directions, the null point lies on the other side.
#For the magnetic fields to be zero,the fields of both wires should be equal and opposite.They are only opposite in outside the wires:
Let x be distance of N from first wire, then distance from 2nd wire is 4+x:

Hence, if currents are in opposite directions the point on x-axis is 11.33cm