<span>To find the gravitational potential energy of an object, we can use this equation:
GPE = mgh
m is the mass of the object in kg
g = 9.80 m/s^2
h is the height of the object in meters
GPE = mgh
GPE = (0.700 kg) (9.80 m/s^2) (1.5 m)
GPE = 10.3 J
The gravitational potential energy of this can is 10.3 J</span>
Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.
Yes... This is a question google could answer. Just Saying
Answer:
The influence of diameter of the blood vessel on peripheral resistance is significant because resistance is inversely proportional to the fourth power of the diameter.
Explanation:
The influence of diameter of the blood vessel on peripheral resistance is significant because the relation between the peripheral resistance and the diameter is given as, resistance is inversely proportional to the fourth power of the diameter. Thus, with small increase or decrease in the value of diameter, the peripheral resistance may vary by a significant amount.