Answer:
order d> a = e> c> b = f
Explanation:
Pascal's law states that a change in pressure is transmitted by a liquid, all points are transmitted regardless of the form
P₁ = P₂
Using the definition of pressure
F₁ / A₁ = F₂ / A₂
F₂ = A₂ /A₁ F₁
Now we can examine the results
a) F1 = 4.0 N A1 = 0.9 m2 A2 = 1.8 m2
F₂ = 1.8 / 0.9 4
F₂a = 8 N
b) F1 = 2.0 N A1 = 0.9 m2 A2 = 0.45 m2
F₂b = 0.45 / 0.9 2
F₂b = 1 N
c) F1 2.0 N A1 = 1.8 m2 A2 = 3.6 m2
F₂c = 3.6 / 1.8 2
F₂c = 4 N
d) F1 = 4.0N A1 = 0.45 m2 A2 = 1.8 m2
F₂d = 1.8 / 0.45 4.0
F₂d = 16 m2
e) F1 = 4.0 N A1 = 0.45 m2 A2 = 0.9 m2
F₂e = 0.9 / 0.45 4
F₂e = 8 N
f) F1 = 2.0N A1 = 1.8 m2 A2 = 0.9 m2
F₂f = 0.9 / 1.8 2.0
F₂f = 1 N
Let's classify the structure from highest to lowest
F₂d> F₂a = F₂e> F₂c> F₂b = F₂f
I mean the combinations are
d> a = e> c> b = f