Answer:
(5) It depends on whether the collision was elastic or inelastic.
Explanation:
Due to the absence of external forces and the fact that masses and initial velocities are known, it is needed to determine if collision is elastic or inelastic. If collision is inelastic, the Momentum Principle is sufficient to calculate final momentum, but if it is elastic, the Momentum Principle should be complemented with the application of the Energy Principle.
Hence, the correct answer is (5).
Answer: 0.16Hz
Explanation:
Given that:
wavelength (λ) = 125 meters
speed (V) = 20 m/s
frequency (F) = ?
Recall that frequency is the number of cycles the wave complete in one second. And its value depends on the wavelength and speed of the wave.
So, apply the formula V = F λ
Make F the subject formula
F = V / λ
F = 20 m/s / 125 meters
F = 0.16 Hz
Thus, the frequency of the wave is 0.16 Hertz.
Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance
Answer:
the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge, typically accompanied by interference between the wave forms produced. Diffraction refers to various phenomena that occur when a wave encounters an obstacle or opening. It is defined as the bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture.
Explanation: FYI I gave you the def and what it refers to BTW
Strain it , the sand didn’t dissolve in the solution it just settled in the bottom