The energy of a photon is given by

where h is the Planck constant and f is the frequency of the light.
Given the relationship between the frequency f, the wavelength

and the speed of light c for an electromagnetic wave:

we can rewrite the energy of the photon as

and by substituting

,

and

, we get the wavelength of the photon:
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Answer:
Correct answer: a = 15.46 m/s²
Explanation:
The formula for accelerated movement with the given data is:
V² - V₀² = 2 · a · d where the initial velocity V₀ and the final V
Since the initial velocity V₀ is zero, the formula is:
V² = 2 · a · d => a = V² / (2 · d) = 27.8² / (2 · 25) = 772.84 / 50 = 15.46 m/s²
a = 15.46 m/s²
God is with you!!!
Answer:
Q1 = 7.25*10^(-16) C
Explanation:
We are given;
electric field strength = (1 x 10^5 N/C
drag force (F) = 7.25 x 10^(-11) N
The question says it's moving with constant velocity. This means that he particle is in equilibrium and not accelerating.
Columbs law force of attraction or repulsion between two charges is given as;
F=(KQ1Q2)/r²
Now, electric field strength is given as the formula;(K*Q2)/r², thus plugging the relevant values gives us;
7.25 x 10^(-11) N= (1 x 10^(5) N/C)Q1 Q1 = 7.25 x 10^(-11) /(1 x 10^(5))
Q1 = 7.25*10^(-16) C
Answer:
10.337m/s2
Explanation:
F=ma
a=F/m
a = 92 / 8.9 = 10.337m/s2