Answer:
R = 5.73 m
Explanation:
For an angle of rotation through 21 degree we know that
arc length is given as

now we know that
Arc = 2.1 m
Angle = 21 degree

so now we have



Answer:
Explanation:
Given
Two projectile is fired vertically upward
One has 4 times the mass of other
When Projectile is fired their trajectory is independent of mass of object. Also if they launched with same speed then both achieved same maximum height in same time and will hit the ground at the same moment.
Answer:
Explanation:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

Let us take east and north as the positive x and y-axes should the motion be plotted in a cartesian plane. Thus, the x value is 45 miles and the y value is 20. The tangent of an angle is equal to the ratio of y to x.
tanθ = y / x
Substituting,
tanθ = 20/45 = 0.44
The value of θ is 23.96°.