Answer:
c.boron-11
Explanation:
The atomic mass of boron is 10.81 u.
And 10.81 u is a lot closer to 11u than it is to 10u, so there must be more of boron-11.
To convince you fully, we can also do a simple calculation to find the exact proportion of boron-11 using the following formula:
(10u)(x)+(11u)(1−x)100%=10.81u
Where u is the unit for atomic mass and x is the proportion of boron-10 out of the total boron abundance which is 100%.
Solving for x we get:
11u−ux=10.81u
0.19u=ux
x=0.19
1−x=0.81
And thus the abundance of boron-11 is roughly 81%.
Answer:
The sun'll likely absorb the radiation if it is close enough (Which it will never be)
Explanation:
Convection
Convection<span> is when heat is transferred by mass motion of a fluid.
</span><span />
Answer:
a) K = [ CO2(g) ]
⇒ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Explanation:
a) CaCO3(s) ↔ CaO(s) + CO2(g)
⇒ K = [ CO2(g) ]
∴ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) H2(g) + F2(g) ↔ 2 HF(g)
⇒ K = [ HF(g) ] ² / [ F2(g) ] * [ H2(g) ]
⇒ Kp = PHF² / PF2 * PH2
for ideal gas:
PV = RTn
⇒ P = n/V RT = [ ] RT
⇒ Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same.
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.