Answer:
The answer is: <em>carbon</em>
Explanation:
Organic molecules contain the chemical element carbon (C) in its structure. In this type of molecules, carbon is usually bonded to hydrogen (H), oxygen (O) and, with less frecuency, nitrogen (N). Therefore, in these molecules, carbon forms simple, double and triple bonds with itself. Examples of organic molecules that are very important in biology are carbohydrates, lipids, proteins and nucleic acids.
<span>The temperature in the tire increased, causing an increased tire pressure. :D</span>
Answer:
The elements become less reactive.
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction and reactivity increases because of greater electron affinity.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased. The electron affinity decreases because of shielding effect and thus atom become less reactive.
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ
Answer:
<h2>The answer is 334 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of ethanol = 423 cm³
density = 0.789 g/cm³
So we have
mass = 0.789 × 423 = 333.747
We have the final answer as
<h3>334 g</h3>
Hope this helps you