add all the number and find the average then subtract the mass defect and then you will get your answer
Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat