Answer:
- gravitational 2.force of gravity
Explanation:
1.it ocours when an object is thrown into the sky. 2.iy ocurs when an object is falling or being pulled from the sky
Answer:
The speed of the sound wave on the string is 545.78 m/s.
Explanation:
Given;
mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m
tension of the string, T = 1400 N
The speed of the sound wave on the string is given by;

where;
v is the speed of the sound wave on the string
Substitute the given values and solve for speed,v,

Therefore, the speed of the sound wave on the string is 545.78 m/s.
From the diagram we have that



Therefore the direction is 30° from east of south
Answer: D
Wavelength λ = 7.5 × 10^-11 m
Explanation:
You are given the frequency of an electromagnetic wave to be:
F = 4.0 x 1018 Hz. And the speed of light C to be
C = 3 × 10^8 m/s
From wave speed formula:
Wave speed is the product of waves frequency and wavelength. That is,
V = fλ
Where
f = frequency
λ = wavelength
V = C = speed of light
Substitute the values of the parameters into the formula
C = fλ
3 × 10^8 = 4 × 10^18 × λ
Make λ the subject of formula
λ = (3×10^8)/(4×10^18)
λ = 7.5 × 10^-11 m
Therefore, the wavelength of the wave is 7.5 × 10^-11 m
Answer:
A
Explanation:
R=V/I
IF you double the resistance, it's become:
2R=(1/2)I