A. The particles are packed more tightly in materials with more density which causes the vibrations to bounce of the partials more rapidly which makes them go faster
<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
False -
F = G M1 M2 / R^2
So F depends on M1 and M2 and as long either is not zero there will be a gravitational force between them.
This had to do with gain power and trade inequality business
Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2

Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;

T = 7.83 X10⁻⁷ s