Answer:
Qsinθ/4πε₀R²θ
Explanation:
Let us have a small charge element dq which produces an electric field E. There is also a symmetric field at P due to a symmetric charge dq at P. Their vertical electric field components cancel out leaving the horizontal component dE' = dEcosθ = dqcosθ/4πε₀R² where r is the radius of the arc.
Now, let λ be the charge per unit length on the arc. then, the small charge element dq = λds where ds is the small arc length. Also ds = Rθ.
So dq = λRdθ.
Substituting dq into dE', we have
dE' = dqcosθ/4πε₀R²
= λRdθcosθ/4πε₀R²
= λdθcosθ/4πε₀R
E' = ∫dE' = ∫λRdθcosθ/4πε₀R² = (λ/4πε₀R)∫cosθdθ from -θ to θ
E' = (λ/4πε₀R)[sinθ] from -θ to θ
E' = (λ/4πε₀R)[sinθ]
= (λ/4πε₀R)[sinθ - sin(-θ)]
= (λ/4πε₀R)[sinθ + sinθ]
= 2(λ/4πε₀R)sinθ
= (λ/2πε₀R)sinθ
Now, the total charge Q = ∫dq = ∫λRdθ from -θ to +θ
Q = λR∫dθ = λR[θ - (-θ)] = λR[θ + θ] = 2λRθ
Q = 2λRθ
λ = Q/2Rθ
Substituting λ into E', we have
E' = (Q/2Rθ/2πε₀R)sinθ
E' = (Q/θ4πε₀R²)sinθ
E' = Qsinθ/4πε₀R²θ where θ is in radians
Answer:
When acceleration is zero (that is, a = dv/dt = 0), rate of change of velocity is zero. That is, acceleration is zero when the velocity of the object is constant. so probably D
Explanation:
D
Answer:
parallel circuit
Explanation:
In a parallel circuit, the potential difference across each of the resistors that make up the circuit is the same. This leads to a higher current flowing through each resistor and subsequently the total current flowing through all the resistors is higher.
(c) When the two pulses completely overlap on the string forms a straight line.
A single disturbance that travels via a transmission medium is referred to as a pulse. This medium might be formed of stuff or a vacuum, and it might be endlessly large or finite in size.
Consider two pulses that are identical in shape and proceed in opposite directions along a string, with the exception that one has positive displacements of the string's elements while the other has negative displacements.
On the string, the two pulses blend together completely.
The pulses completely balance one another out in terms of removing string elements from equilibrium, yet the string still moves. Shortly after the string is once again shifted, the pulses will have passed each other.
The correct option is (c)
Learn more about pulse here:
brainly.com/question/14885673
#SPJ4
Answer:
75.5g
Explanation:
From the ionic equation, we can write

next we find the number of charge
Note Q=it
for i=8.5A, t=3.75 to secs 3.75*60*60=13500secs
hence

Since one faraday represent one mole of electron which equal 96500C
Hence the number of mole produced by 114750C is
114750/96500=1.2mol
The mass of copper produced is

Hence the amount of copper produced is 75.5g