Answer:

Explanation:
Given that,
Radius, r = 2 m
Velocity, v = 1 m/s
We need to find the magnitude of the centripetal acceleration. The formula for the centripetal acceleration is given by :

So, the magnitude of centripetal acceleration is
.
The kinetic energy is

and the height of the building doesn't matter at all.

joules
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Answer:
Explanation:
The path length difference = extra distance traveled
The destructive interference condition is:

where m =0,1, 2,3........
So, ←
![\Delta d = (m+1/2)\lamb da9/tex]so [tex]\Delta d = \frac{\lambda}{2}](https://tex.z-dn.net/?f=%5CDelta%20d%20%3D%20%28m%2B1%2F2%29%5Clamb%20da9%2Ftex%5D%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3Eso%20%3C%2Fstrong%3E%5Btex%5D%5CDelta%20d%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%7D)
⇒ λ = 2Δd = 2×10 = 20
Answer:
The curl is 
Explanation:
Given the vector function

We can calculate the curl using the definition

Thus for the exercise we will have

So we will get

Working with the partial derivatives we get the curl
