On a roller coaster, the greatest potential energy is at the highest point of the roller coaster
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572
A: the type of plant
B: how tall the plant is
Answer:
it lowers the voltage in homes
Explanation:
this is due to safety reasons as a human cant survive power line voltages which are between 150k and 760k and if you plugged anything short of a piece of 1 inch thick wire not counting insulation it would immediately start smoking and burn the cable.
<span>by vectors that are all the same length
</span>