I will assume you are asking what the initial acceleration of the sphere is since the information provided seems to indicate that.
First we need to know Newton's Law
F=ma.
We know the mass of the sphere and we want a so we solve to get
a=F/m.
Now we need the force on the charged sphere. This is given by the electric field, E and the charge, Q. The relationship is F=Q×E. (Recall that the electric field units can be expressed in Newtons/Coulomb).
Now the electric field above a large (~infinite) sheet of charge with a known charge density σ, is given by
E = σ/(2ε0)
Plug in your values of σ, to get E, then the sphere charge Q to get F, the the mass into a = F/m to get the acceleration
Answer:
decibels (dB)
Explanation:
The sound intensity level is a quantity derived from the sound intensity.
The intensity of a wave is defined as the power of the source of the wave divided by the area through which the power of the wave is spread, mathematically:

where
P is the power of the source
is the surface area over which the wave spreads (assuming that the wave propagates in all directions, it corresponds to the surface area of a sphere of radius
, where r is the distance between the source of the wave and the observer)
For sound waves, the intensity is often expressed using another unit, called decibel (dB), defined as follows:

where
is the sound intensity level in decibels
I is the intensity of the sound wave
is the threshold intensity of a sound that a person can normally hear.
Answer:
get students and a license
Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s