Instantaneous velocity is the velocity at a specific instant in time. I bet you are taking Honors Physics.
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
Answer:
857.5 m
2.8583×10⁻⁶ seconds
Explanation:
Time taken by the sound of the thunder to reach the student = 2.5 s
Speed of sound in air is 343 m/s
Speed of light is 3×10⁸ m/s
Distance travelled by the sound = Time taken by the sound × Speed of sound in air
⇒Distance travelled by the sound = 2.5×343 = 857.5 m
⇒Distance travelled by the sound = 857.5 m
Time taken by light = Distance the light travelled / Speed of light
Time taken by light = 2.8583×10⁻⁶ seconds
Easier to write, easier to read, easier to understand, easier to compare
Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F =
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A = = 1/8
F_A = 8 F_B