Like windmills they use the winds to generate their power.
Answer: rp/re= me/mp= 544 * 10^-6.
Explanation: To calculate this problem we have to consider the circular movement by the electron and proton inside a magnetic field.
Then the dynamic equation for the circular movement is given by:
Fcentripetal= m*ω^2.r
q*v*B=m*ω^2.r
we write this for each particle then we have the following:
q*v*B=me* ω^2*re
q*v*B=mp* ω^2*rp
rp/re=me/mp=9.1*10^-31/1.67*10^-27=544*10^-6
Answer:
The electric field due to the right ring at a location midway between the two rings is 
Explanation:
Given that,
Radius of first ring = 5 cm
Radius of second ring = 20 cm
Charge on the left of the ring = +30 nC
Charge on the right of the ring = -30 nC
We need to calculate the electric field due to the right ring at a location midway between the two rings
Using formula of electric field
Put the value into the formula


Hence, The electric field due to the right ring at a location midway between the two rings is 
Answer:

Explanation:
The equation for the linear impulse is as follows:

where
is impulse,
is the force, and
is the change in time.
The force, according to Newton's second law:

and since 
the force will be:

replacing in the equation for impulse:

we see that
is canceled, so

And according to the problem
,
and the mass of the passenger is
. Thus:



the magnitude of the linear impulse experienced the passenger is 
Answer:
366 m
Explanation:
u = 90 km/h = 25 m/s,
theta = 5 degree
acceleration, a = g Sin theta = 9.8 x Sin 5 = 0.854 m/s^2
The final velocity os zero and let the braking distance be s.
Use third equation of motion
v^2 = u^2 - 2 a s
0 = 25 x 25 - 2 x 0.854 x s
s = 366 m