After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:
diameter of largest orbit is 0.60 m
Explanation:
given data
isotopes accelerates KE = 6.5 MeV
magnetic field B = 1.2 T
to find out
diameter
solution
first we find velocity from kinetic energy equation
KE = 1/2 × m×v² ........1
6.5 × 1.6 ×
= 1/2 × 1.672 ×
×v²
v = 3.5 ×
m/s
so
radius will be
radius =
........2
radius =
radius = 0.30
so diameter = 2 × 0.30
so diameter of largest orbit is 0.60 m
Answer:
oxygen is used up is the answer
Explanation:
These vaporized molecules are drawn up into the flame, where they react with oxygen from the air to create heat, light, water vapor (H2O) and carbon dioxide (CO2).
because a chemical change takes time
We are given that a 500 kg object is hanging from a spring. To determine the amount the spring is stretched we will use Hook's law, which states the following:

Where:

Since the object is hanging the only force acting on the spring is the weight of the object. The weight of the object is:

Where:

Plugging in the values we get:

Solving the operations:

Now we solve for "x" from Hook's law by dividing both sides by "k":

Now we plug in the known values:

Solving the operations:

Therefore, the spring is stretched by 5.4 meters.