Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
Answer:
Biasing - Biasing means being unfair to someone or something, and liking the other one or helping them.
Doping - Doping is where a person use drug to get better at sporting and get stronger muscles, such as getting stronger, getting faster and so on. It is mostly used by athletics.
Hi there!
We can use the rotational equivalent of Newton's Second Law:

Στ = Net Torque (Nm)
I = Moment of inertia (kgm²)
α = Angular acceleration (rad/sec²)
We can plug in the given values to solve.
