1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
7

It takes Mike 18 minutes to finish reading 4 pages of a book. How long does it take for him to finish reading 30 pages

Mathematics
1 answer:
dusya [7]3 years ago
5 0

Answer:

70

Step-by-step explanation:

You might be interested in
Find the value of ....
kaheart [24]
I don't think this is middle school...

(2^8 x 3^-5 x 6^0)^-2 x ((3^-2)/(2^3))^4 x (2^28)

(256 x (1/243))^-2 x ((1/9)/(8))^4 x 268435456

1.05349794239^-2 x (<span>0.01388888888)^4 x 268435456
</span><span>
0.90101623534 x </span><span>3.72108862e-8 x 268435456

</span>8.99999997623

9



9 is your answer.
8 0
3 years ago
Identify which line from the graph the following right triangles could lie on.
qaws [65]

Answer:

Step-by-step explanation:

Slope of line A = \frac{\text{Rise}}{\text{Run}}

                         = \frac{9}{3}

                         = 3

Slope of line B = \frac{9}{6}

                         = \frac{3}{2}

Slope of line C = \frac{6}{8}

                         = \frac{3}{4}

5). Slope of the hypotenuse of the right triangle = \frac{\text{Rise}}{\text{Run}}

                                                                                = \frac{90}{120}

                                                                                = \frac{3}{4}

Since slopes of line C and the hypotenuse are same, right triangle may lie on line C.

6). Slope of the hypotenuse = \frac{30}{10}

                                              = 3

Therefore, this triangle may lie on the line A.

7). Slope of hypotenuse = \frac{18}{24}

                                        = \frac{3}{4}

Given triangle may lie on the line C.

8). Slope of hypotenuse = \frac{21}{14}

                                        = \frac{3}{2}

Given triangle may lie on the line B.

9). Slope of hypotenuse = \frac{36}{24}

                                        = \frac{3}{2}

Given triangle may lie on the line B.

10). Slope of hypotenuse = \frac{48}{16}

                                          = 3

Given triangle may lie on the line A.

7 0
3 years ago
Jose sold 102 raffle tickets for his basketball team. If he was given 125 tickets to sell, about what percentage of his tickets
Setler [38]
He sold about <span>80%  of his tickets</span>
4 0
3 years ago
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
3 years ago
Read 2 more answers
Perform the indicated operation. (-18)/-(4)
Illusion [34]
A negative divided by a negative is always a positive. 4 can go into 18 only 4 times to get 16 with a remainder of 2. 2 is half of four, therefore -4 can go into -18 4.5 times. 
The answer is 4 1/2 or 4.5.
I hope this helps ^-^
7 0
3 years ago
Other questions:
  • Vance used the associative property to write (4.5m+7/8)-9 as the equivalent expression 4.5(7/8-9). Did Vance apply the associati
    11·2 answers
  • Pls answer I need help
    10·2 answers
  • There are 158 students registered for American History classes. There are twice as many students registered in second period as
    8·1 answer
  • Please help ......................
    15·1 answer
  • What is the surface area of the solid that can be formed by this net?<br><br>plz help fast!!!​
    10·2 answers
  • Which facts are true for the graph of the function below? Check all that apply.
    13·1 answer
  • Find the value of x. Round your answer to the nearest tenth.<br> 57°<br> 15<br> Х<br> X =
    11·1 answer
  • WILL MARK BRAINLIEST
    11·2 answers
  • 5/12,3/8,6,14in ascending or<br><br><br>der​
    15·1 answer
  • [(8-2) x (3+2) -1] x 3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!