b. 460.8 m/s
Explanation:
The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

c. 18,000 m
Explanation:
The relationship between speed of the wave, distance travelled and time taken is

where
v = 6,000 m/s is the speed of the wave
d = ? is the distance travelled
t = 3 s is the time taken
Re-arranging the formula and substituting the numbers into it, we find:

The answer is the suns gravity
Answer:
The force exerted by the child is 38.25 Newton
Explanation:
We use the formula F=mxa (m=mass and a= aceleration):
F= 45kg x 0,85 m/s2=38, 25 kgxm/s2= <em>38, 25 N</em>
-- Energy is never created or destroyed.
-- No energy is added to the pendulum during its swing.
-- If we ignore air resistance and friction, then no energy is lost
from the pendulum during its swing.
-- Therefore the total energy of the pendulum must be constant.
-- Any potential energy lost at any point in the swing
must show up as kinetic energy. If it had 484J at the top,
then it'll have 484J at the bottom.
Answer:
It requires more tension to pull up the track
Explanation:
Net force must be zero to maintain constant velocity.
Weight force will always be pointed down the slope. Call it W
Friction force (Call it Ff) will be down slope when movement is up slope.
Friction force will be up slope when movement is down slope.
W and Ff are always positive numbers
Call the pulling force T
If Up slope is considered the positive direction
Moving up slope
Tu - Ff - W = 0
Tu = Ff + W
Moving down slope
Td + W - Ff = 0
Td = Ff - W
Ff + W > Ff - W therefore Tu > Td