Answer:
C. If a solar cell breaks, it releases chemicals and can harm humans.
Explanation:
Hope this helped! :)
Hello!
The H₃O⁺ concentration can be found using the definition of pH and clearing the equation for [H₃O⁺]. The solution has a pH lower than 7, so the Sauvignon Blanc is
acid. The calculation for [H₃O⁺] is shown below:
![pH=-log [H_3O^{+}]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH_3O%5E%7B%2B%7D%5D%20)
![[H_3O^{+}]= 10^{-pH}=10^{-3,24}=0,00058M](https://tex.z-dn.net/?f=%5BH_3O%5E%7B%2B%7D%5D%3D%2010%5E%7B-pH%7D%3D10%5E%7B-3%2C24%7D%3D0%2C00058M%20)
So, the concentration of H₃O⁺ in a Sauvignon Blanc with a pH of 3,24 is
0,00058 MHave a nice day!
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M