Answer:
11
Explanation:
electronic configuration = 1s^2, 2s^2, 2p^6, 3s^1
therefore total electrons = 2+2+6+1 = 11
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>youu</em><em> </em>。◕‿◕。
Answer:
The correct answer is 29 grams.
Explanation:
Based on the given question, the reaction will be,
CH3CH=CHCH3 + H2 ⇒ CH3CH2CH2CH3
The molecular weight of butene is 56 grams per mole, and the molecular weight of butane is 58 grams per mole.
Thus, it can be said that 56 grams of butene reacts with hydrogen gas and produces 58 grams of butane.
Therefore, 28 grams of butene when reacts with hydrogen gas to give,
= 58/56 * 28 = 29 grams of butane.
Hence, the mass of butane produced will be 29 grams.
pretty sure it's both are physical changes.
"Only 2 molecules" of ATP <span>produced during the citric acid cycle
Hope this helps!
</span>
Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp = 
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp = 
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp = 
0.0104 = ![\frac{200 - P(NO_{2}) }{[P(NO_{2} )]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B200%20-%20P%28NO_%7B2%7D%29%20%20%7D%7B%5BP%28NO_%7B2%7D%20%29%5D%5E%7B2%7D%7D)
0.0104
+
- 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are
= 98.7 MPa and P(N₂O₄) = 101.3 MPa