Answer:
I think emi should put it in a metal container and put it in the direction of the sun cause this will help produce heat as the sun shines on the metal container
Explanation:
Stars aren't visible during the sunlit hours of daytime because the light-scattering properties of our atmosphere spread sunlight across the sky. Seeing the dim light of a distant star in the blanket of photons from our Sun becomes as difficult as spotting a single snowflake in a blizzard. (put in your own words this is from online)
Answer:
The correct answer is - a. Fluorine is the leaving group in Sarin.
Explanation:
A leaving group is a group that leaves a complete negative charge in heterolytic cleavage when it separates out from the molecule. Sarine reacts with the active site of the enzyme acetylcholinesterase that is essential for nerve transmission.
In this given case, Sarin that is an acid fluoride and ester of methyl phosphonic acid, the fluorine atom is present is the one that leaves with a complete negative charge, therefore, fluorine is the leaving group in Sarin.
Thus, the first option is correct that Fluorine is the leaving group in Sarin.
Sample means for solutions 1 and 2 are 19.27 and 10.32 respectively
In semiconductor manufacturing,
The total for answer 1 is given by:
9.7+10.5+9.4+10.6+9.3+10.7+9.6+10.4+10.2+10.5 = 192.7
The sample size is 10 and provides us with
192.7/10 = 19.27
For solution 2, the sum is given by:
10.6+10.3+10.3+10.2+10.0+10.7+10.3+10.4+10.1+10.3 = 103.2
The sample size is 10, this gives us
103.2/10 = 10.32
The total for answer 2 is given by:
10.6+10.3+10.3+10.2+10.0+10.7+10.3+10.4+10.1+10.3 = 103.2
The sample size is 10 and provides us with
103.2/10 = 10.32
Learn more about semiconductor manufacturing here brainly.com/question/22779437
#SPJ4.
In semiconductor manufacturing, wet chemical etching is often used to remove silicon from the backs of wafers prior to metalization. The etch rate is an important characteristic in this process and is known to follow a normal distribution. Two different etching solutions have been compared, using two random samples of 10 wafers for each solution. Assume the variances are equal. The etch rates are as follows (in mils per minute): Solution 1 Solution 2 9.7 10.6 10.5 10.3 9.4 10.3 10.6 10.2 9.3 10.0 10.7 10.7 9.6 10.3 10.4 10.4 10.2 10.1 10.5 10.3 Calculate sample means of solution 1 and solution 2