1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
2 years ago
10

Select the correct answer.

Mathematics
2 answers:
ch4aika [34]2 years ago
7 0

Answer:

it is point G

Step-by-step explanation:

ivolga24 [154]2 years ago
7 0

Answer:

The answer is C, point G.

Step-by-step explanation:

X is negative so you move to the left. Y is positive, so  you move up. This one is easy, because only one point is in that area.

You might be interested in
Find the length of 1 side of square if the area is 49 sq.cm<br> method needed
ladessa [460]

Answer:

It would be 7cm

Step-by-step explanation:

please find step by step explanation on the picture

7 0
2 years ago
Solve the absolute value inequality: |x + 12| + 5 &lt; 27 Isolate the absolute value by subtracting 5 from both sides.
Feliz [49]

Answer:

- 34 < x < 10

Step-by-step explanation:

Inequalities of the type | x | < a, always have a solution of the form

- a < x < a

given | x + 12 | + 5 < 27 ( subtract  5 from both sides )

| x + 12 | < 22, then

- 22 < x + 12 < 22 ( subtract 12 from all 3 intervals )

- 34 < x < 10


8 0
3 years ago
Read 2 more answers
How do you solve 42 divided by 63
Dafna1 [17]

42  ÷ 63

  63 -> 420

63x6=378


420-378=42

       63->420


So, how many times does 63 go into 42? Well, it doesn't. So put down a zero on your paper, and then a decimal. So if we add a zero onto 42, it becomes 420. Well, 420 is divisible by 63. In fact, 63 goes into 420 6 times, making a total of 378. 420-378 = 42. Then the process begins again. So you've got a 0.6, and that six just keeps on repeating. On paper, you're gonna wanna put a dash over the six to show that it's repeating.


Anyways, the answer is .66 repeating.

6 0
3 years ago
Read 2 more answers
Find the slope for each of the order pair. (-2,-1) and (8,-3)
kondaur [170]

Answer:

-0.2

Step-by-step explanation:

Slope (m) =ΔY/ΔX= 8-(-2)/-3-(-1)

= -1/5

= -0.2

4 0
2 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • R=-6 and t=3. what is 12-t | 3r-2 |
    9·1 answer
  • Sam has 79 model cars. He wants to give them to 4 of his friends. He wants each friend to have an equal number of cars. How many
    7·2 answers
  • water balloon was thrown from a window. The height of the water balloon over time can be modeled by the function y=-16x^(2)+160x
    8·1 answer
  • Find the product (2x-1) (x^2+4x+8)
    14·1 answer
  • Convert to cups.<br><br> 9 quarts
    15·1 answer
  • Round 0.67 to the nearest hundredth.
    13·2 answers
  • Which pair of measurements is not equivalent?
    5·1 answer
  • The point (6, n) lies on the circle whose equation is (x − 1)2 + (y − 5)2 = 50. Find the values of n
    8·2 answers
  • Tell whether the lines through the given points are parallel, perpendicular, or neither.
    15·2 answers
  • What is x+x+x+x+x+x+x+x+x+x+b+b+b+b+3=
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!