Answer:
climatic changes
ambient changes
human interferance and the growt of cities and human civilization
and invasive especies
Explanation:
Answer:
Option d and e are correct.
Explanation:
The expression for velocity of pulse in a stretched string can be given as follows
v = 
where T is tension in the string , m is mass of string per unit length.
Use of lighter string of the same length, under the same tension amounts to higher m so velocity will decrease. Hence option d is correct.
Similarly, v is directly proportional to square root of tension. So if we increase tension , velocity also increases. So option e ) is correct.
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀
Answer:
the weight of the object decreases when it is taken from the Earth to the Moon
Explanation:
The weight of an object is defined as the product of the mass of the object with the acceleration due to gravity of the Planet.

where,
W = weight of the object
m = mass of the object
g = acceleration due to gravity on the planet
The mass of an object remains constant everywhere in the universe. Therefore, the weight is directly proportional to the value of acceleration due to gravity.
The value of acceleration due to gravity on the Moon is lesser than its value on the Earth.
<u>Hence, the weight of the object decreases when it is taken from the Earth to the Moon </u>