A star is a large ball of gas that emits energy produced by nuclear reactions in the star's interior. Much of this energy is emitted as electromagnetic radiation, including visible light. Light emitted by stars enables other objects in the universe to be seen by reflection.
Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.
Answer:
330.24 Hz
Explanation:
Given:
Frequency, f = 320 Hz
L1 = 25.8 cm
L2 = 78.4 cm
L3 = 131.1 cm
Let the wavelength be λ
Then, L1 which is the length of the column of air is λ/4.
λ/4 = 25.8 cm
λ = 25.8 × 4 = 103.2 cm = 1.032 m
Then, speed of sound in air is:
v = λ f
⇒ v = 1.032 × 320 Hz
⇒ v = 330.24 m/s
Answer:
2 is the numerical answer.
Explanation:
Hello there!
In this case, according to the given information and formula, it is possible for us to remember that equation for the calculation of the average kinetic energy of a gas is:

Whereas R is the universal gas constant, NA the Avogadro's number and T the temperature.
Which means that for the given ratio, we can obtain the value as follows:

Regards!