Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 
Answer;
D. The car would begin to move in the direction it was headed in a straight line.
Explanation;
-Centripetal force is any net force causing uniform circular motion. The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration.
-The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.
-Therefore,If the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular
path were reduced then the car would begin to move in the direction it was headed in a straight line.
Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be
(<em>the train must see the car advancing at a lower speed</em>), where
is the speed of the automobile and
the speed of the train.
So we have
.
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

And in that time the car would have traveled (<em>relative to the ground</em>):

If they are traveling in opposite directions, <u>we have to do all the same</u> but using
(<em>the train must see the car advancing at a faster speed</em>), so repeating the process:



Answer:
15 meters
Explanation:
The inicial energy of the ball is just potencial energy, and its value is:
E = m * g * h = m * g * 20,
where m is the ball mass, and g is the value of gravity.
In the moment that the ball strickes the ground, all potencial energy transformed into kinetic energy, and 25% of this energy is lost, so the total energy at this moment will be:
E' = 0.75 * E = 0.75 * m * g * 20 = 15*m*g
This kinetic energy will make the ball goes up again, and at the maximum height, all kinetic energy is transformed back into potencial energy.
So, as the mass and the gravity are constants, we can calculate the height the ball will reach:
E' = m*g*h = 15*m*g -> h = 15 meters