Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Aeronautical maps are usually meant to be used by pilots and air aviation professionals in other to navigate or traverse though the sky. With various elements such as vegetation, hills, valleys being depicted by color coded keys or legend. Hence, the absence of color on an aeronautical map make the <em>representation of elements very difficult</em>.
Visual map interpretation is usually aided by the use of legends. The legend hold the key to the elements which are represented on the map. Usually, a combination of colors and shapes makes up the legend and makes map interpretation easy.
Therefore, the absence of various color palletes for representation on a black and white aeronautical map will make it difficult to use.
Learn more : brainly.com/question/25323763
Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
Answer:
1/8 = (1/2)^3
This implies the sample has decayed for 3 half lives
3 * 5730 yrs = 17,200 years