Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
Answer:
b. ΔE rxn is a measure of heat
Explanation:
a. ΔHrxn is the heat of reaction. <em>TRUE. </em>ΔHrxn or change in enthalpy of reaction is per definition the change in heat that is involved in a chemical reaction.
b. ΔErxn is a measure of heat. <em>FALSE. </em>Is the change in internal energy of a reaction
c. An exothermic reaction gives heat off heat to the surroundings. <em>TRUE</em>. An exothermic reaction is a chemical reaction that releases heat.
d. Endothermic has a positive ΔH. <em>TRUE. </em>When a process is exothermic ΔH<0 and when the process is endothermic ΔH>0
e. Enthalpy is the sum of a system's internal energy and the product of pressure and volume. <em>TRUE. </em>Under constant pressure and volume the formula is ΔH = ΔE + PV
I hope it helps!
The two main types of weathering are material and chemical.
Mechanical weathering is the disintegration of rock into smaller and smaller fragments.
Chemical weathering transforms the original material into a substance with a different composition and different physical characteristics.
you can google it and it pops up right away
Answer:
The process of elemental stratification relies on the diffusion velocity, which causes the migration of the different chemical elements within stars.
Explanation: