Explanation:
Haemoglobin consists of heme unit which is comprised of an <u>
</u> and porphyrin ring. The ring has four pyrrole molecules which are linked to the iron ion. In oxyhaemoglobin, the iron has coordinates with four nitrogen atoms and one to the F8 histidine residue and the sixth one to the oxygen. In deoxyhaemoglobin, the ion is displaced out of the ring by 0.4 Å.
The prosthetic group of hemoglobin and myoglobin is - <u>Heme</u>
The organic ring component of heme is - <u>Porphyrin</u>
Under normal conditions, the central atom of heme is - <u>
</u>
In <u>deoxyhemoglobin</u> , the central iron atom is displaced 0.4 Å out of the plane of the porphyrin ring system.
The central atom has <u>six</u> bonds: <u>four</u> to nitrogen atoms in the porphyrin, one to a <u>histidine</u> residue, and one to oxygen.
Answer:
18 electrons
Explanation:
Note: The third energy level can actually hold up to 18 electrons, so it is not really filled when it has 8 electrons in it.
Answer:
9.430 * 10¹⁷ protons per second whill shine on the book from a 62 W bulb
Explanation:
To answer this question, first let's calculate the energy of a single photon with a wavelength (λ) of 504 nm:
E = hc/λ
Where h is Planck's constant (6.626*10⁻³⁴ J·s) and c is the speed of light (3*10⁸ m/s).
E = 6.626*10⁻³⁴ J·s * 3*10⁸ m/s ÷ (504*10⁻⁹m) = 3.944 * 10⁻¹⁹ J.
So now we can make the equivalency for this problem, that
<u>1 proton = 3.944 * 10⁻¹⁹ J</u>
Now we convert watts from J/s to proton/s:
1
= 1 W
Solving the problem, a 62 W bulb converts 5% of its output into light, so:
3.1 watts are equal to [ 2.535*10¹⁸ proton/s * 3.1 ] = 7.858 * 10¹⁸ proton/s
Of those protons per second, 12% will shine on the chemistry textbook, thus:
7.858 * 10¹⁸ proton/s * 12/100 = 9.430 * 10¹⁷ protons/s
The chemical formula : X₃Y₂
<h3>Further explanation </h3>
The noble gas element is a stable class of elements. The noble gas element is monatomic. Stability of noble gases is caused by an electron configuration that has a stable configuration of 8 (has 8 valence electrons) except He with a duplet configuration (has 2 valence electrons)
Other elements that do not yet have electron configurations such as noble gases will try to achieve their stability by forming bonds between elements.
This is generally called the octet rule
X has 2 valence electrons.to achieve stability, element X will release 2 electrons to form X²⁺
Y has 5 valence electrons, to achieve stability, the element Y will attract/ add electrons to form Y³⁻
The two compounds will form a compound with the charges crossed : X₃Y₂