Flerovium at its ground state is solid. It has electron configuration of [Rn]5f¹⁴6d¹⁰7s²7p². The expected number of valence electrons in a flerovium atom is 2. A ground state is the most stable state of an atom at satndard temperature and pressure.
Answer:
0.4 moles
Explanation:
To convert between moles and grams you need the molar mass of the compound. The molar mass of of CaCO3 is 100.09g/mol. You use that as the unit converter.
40gCaCO3* 1mol CaCO3/100.09gCaCO3 = 0.399640 mol CaCO3
This rounds to 0.4 moles CaCO3
Answer: The Kelvin scale is related to the Celsius scale. The difference between the freezing and boiling points of water is 100 degrees in each, so that the kelvin has the same magnitude as the degree Celsius.
Explanation:
Celsius is, or relates to, the Celsius temperature scale (previously known as the centigrade scale). The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale as well as serve as a unit increment to indicate a temperature interval(a difference between two temperatures or an uncertainty). “Celsius” is named after the Swedish astronomer Anders Celsius (1701-1744), who developed a similar temperature scale two years before his death.
K = °C + 273.15
°C = K − 273.15
Until 1954, 0 °C on the Celsius scale was defined as the melting point of ice and 100 °C was defined as the boiling point of water under a pressure of one standard atmosphere; this close equivalence is taught in schools today. However, the unit “degree Celsius” and the Celsius scale are currently, by international agreement, defined by two different points: absolute zero, and the triple point of specially prepared water. This definition also precisely relates the Celsius scale to the Kelvin scale, which is the SI base unit of temperature (symbol: K). Absolute zero—the temperature at which nothing could be colder and no heat energy remains in a substance—is defined as being precisely 0 K and −273.15 °C. The triple point of water is defined as being precisely 273.16 K and 0.01 °C.
Answer:
1.811 g
Explanation:
The computation of the mass need to use to make the solution is shown below:
We know that molarity is

So,


= 0.031 moles
Now

where,
The Molecular weight of NaCl is 58.44 g/mole
And, the moles are 0.031 moles
So, the mass of NaCL is

= 1.811 g
We simply applied the above formulas
Answer: 0.20 M
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1.40 M
= volume of stock solution = 72.0 ml
= molarity of diluted solution = m
= volume of diluted solution = 248 ml


Now 124 mL portion of this prepared solution is diluted by adding 133 mL of water.
According to the dilution law,

where,
= molarity of stock solution = 0.41 M
= volume of stock solution = 124 ml
= molarity of diluted solution = m
= volume of diluted solution = (124 +133) ml = 257 ml


Thus the final concentration of the solution is 0.20 M.