Answer:
The force of the gases pushes downward at the same time that the gases push the rocket upwards. 1.
Explanation:
Answer:
in my opinion it wouldn't be regular seasons like what we have now it would be equal in every poles .. there would not be ice in North. [its my opinion though] sorry if I am wrong
Answer: They always have the same functional groups.
Explanation:
use quizlet too if you have toooo
Full question options;
(Fe, Pb, Mg, or Ca)
Answer:
Iron - Fe
Explanation:
We understand tht metals pretty much form bonds by losing their valence (outermost electrons). But this question specifically asks for metals that lose beyond their outermost electrons; next to outermost principal energy levels.
Pb, Mg, and Ca only lose their outermost electrons to form the following ions;
Pb2+, Mg2+, and Ca2+.
This is because their ions have achieved a stable octet configuration - the dreamland of atoms where they are satisfied and don't need to go into reactions again.
Iron on the other hand has the following electronic configurations;
Fe: [Ar]4s2 3d6
Fe2+: [Ar]4s0 3d6
Fe3+: [Ar]4s0 3d5
This means ion can lose both the ooutermost electrons (4s) and next to outermost principal energy levels (3d). So correct option is Iron.
Answer:
Sr would be the limiting reactant
5 moles
Explanation:
Since the equation is a balanced equation, the coefficient shows how each substance relates to the other in terms of the number of moles.
Reactants would be those on the left hand side of the arrow, while the products would be found on te right and side of the arrow. In this question, the reactants would be Sr and O₂.
Limiting reactant is the reactant that is insufficient; meaning to say that there is not enough of that substance and thus the reaction cannot continue. The other reactant(s) that is not limiting is called the excess reactants.
From the balanced equation, 2 moles of Sr is needed to react with 1 mole of O₂. Thus, if we have 5 moles of each reactant, Sr would be the limiting reactant since for every 1 mole of O₂, there has to be 2 moles of Sr in order for the reaction to proceed. Thus, if we have 5 moles of O₂, we would need 10 moles of Sr.
When we work out the amount of products formed, we look at the number of moles of the limiting reactant. This is because the limiting reactant determines how much is being reacted, while the excess number of moles of the excess reactant will remain unreacted.
For every 2 moles of Sr reacted, 2 moles of SrO would be produced. This means that the mole ratio of Sr to SrO is 1:1. Thus, since 5 moles of Sr has been reacted, 5 moles of the product (SrO) would be produced.