Explanation:
Given
Velocity v = 23.0m/s
Distance S = 3.45m
Required
Time it will take the skier to reach the ground;
Using the equation of motion;
S = ut + 1/2gt²
3.45 = 23t + 1/2(9.8)t²
3.45 = 23t + 4.9t²
4.9t²+23t-3.45 = 0
Factorize;
t = -23 ±√23²-4(4.9)(-3.45)/2(4.9)
t = -23 ±√529+67.62/9.8
t = -23±√596.62/9.8
t = -23±24.43/9.8
t = 1.43/9.8
t = 0.146 secs
Hence take the skier 0.146 secs to reach the ground.
b) Horizontal distance covered is the range;
Range = U√2H/g
Range = 23√2(3.45)/9.8
Range = 23√6.9/9.8
Range = 23√0.7041
Range = 23(0.8391)
Range = 19.29m
Hence the horizontal distance travelled in air is 19.29m
Answer:
Explanation:
The system is made up of three body system which are the boulder, earth and the moon also the sum of potential ad kinetic energies are assumed to be the same also note that the boulder was launched from the moon at an initial velocity
A ) Minimum speed of the boulder for it to reach the earth = 2.3 km/s
B) ignoring air resistance the impact speed on earth of a boulder launched at this minimum speed = 11 km/s
find attached the solution in details
Answer:
The impulse delivered to the bungee jumper is 1.32 kN.s
Explanation:
The situation can be shown graphically as shown in the figure.
Impulse delivered to the bungee jumper = Area under the curve.
The curve represents a triangle and the area of traiangle = (1/2)base×height
The base of the triangle from the graph = 1.2 seconds.
The height of the triangle from the graph = 2.2 kN
Thus,
<u>Impulse = (1/2)×(1.2 seconds)×(2.2 kN) = 1.32 kN.s</u>
Force = mass * acceleration
F = 15 *8 = 120 Newton