I think it is option (C).
If the answer is helpful then mark me as brainly.
Answer:
A. speed = 7.14 Km/s
B. distance = 1820.7 Km
Explanation:
Given that: a = 14.0 m/
, t = 8.50 minutes.
But,
t = 8.50 = 8.50 x 60
= 510 seconds
A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;
v = u + at
where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.
u = 0
So that,
v = 14 x 510
= 7140 m/s
The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.
B. the distance traveled can be determined by applying second equation of motion.
s = ut +
a
where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.
u = 0
s =
a
=
x 14 x 
= 7 x 260100
= 1820700 m
The distance that the shuttle has traveled during the given time is 1820.7 Km.
Explanation:
It is given that,
Area of nickel wire, 
Resistance of the wire, R = 2.4 ohms
Initial value of magnetic field, 
Final magnetic field, 
Time, t = 1.12 s
Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :






Induced current in the loop of wire is given by :



So, the induced current in the loop of wire over this time is
. Hence, this is the required solution.
Atomic Number = amount of protons. Atomic mass = protons (7) and neutrons (8)
Electrons will be the protons - any charge the isotope has. For example, a +2 charge would make the electrons 7- (+2) = 5. A -2 charge would be electrons 7 - (-2) = 9
Answer:
#_electrons = 2 10¹⁰ electrons
Explanation:
For this exercise we can use a direct rule of three proportions rule. If an electron has a charge of 1.6 10⁻¹⁹ C how many electrons have a charge of 3.2 10⁻⁹ C
#_electrons = 3.2 10⁻⁹ (
)
#_electrons = 2 10¹⁰ electrons